MScC ARTIFICIAL INTELLIGENCE
MASTER THESIS

Career planning with Reinforcement
Learning

by
SPYROS AVLONITIS
12899283

November 1, 2022

48 Credits
December 2021 - September 2022

Supervisor:
Dr. Masoud Mansoury
Eraminer:
Dr. Maarten Marx

Second reader:
Dor Lavi & Dr. David Graus
(Randstad)

UNIVERSITEIT VAN AMSTERDAM
X



Contents

1 Introduction

2 Background

2.1 Career development and Artificial Intelligence . . . . . . ... ... . ... ...
2.2 Reinforcement Learning . . . . . . . . .. ..o
2.2.1 Markov Decision Process . . . . . . . .. ... 0oL
2.2.2  Dynamic Programming . . . . . . . . . . . . . ...
2.2.3 Offline reinforcement learning . . . . . . .. .. .. ... 0L
2.2.4  On-policy and Off-policy RL . . . . . . ... .. ... ... ... .. ...
2.2.5  Tabular and Approximate Solution Methods . . . . . . . ... ... ...
2.2.6 0 SArSa . . ..o
227 Q-Learning . . . . . . ...
2.2.8 Deep Q-Learning Network (DQN) . . . . . .. ... ... ... ... ...
2.2.9 Advantage Actor Critic (A2C) . . . . . . .. .. Lo
Methodology
3.1 Datasets . . . . . . . .
3.1.1 Work experience dataset . . . . . .. ... ... oL
3.1.2 Vacancies dataset . . . . . . . . ...
3.1.3 Randstad’s vacancies dataset . . . . . . .. ... ... ... ...
3.1.4 Job applications dataset . . . . . .. . ... ... ... ..
3.2 Markov Decision Process . . . . . . . . . .. ...
3.2.1 Naive environment . . . . . . . ...
3.2.2 Standard environment . . . . ... ..o
3.3 Offline Reinforcement Learning . . . . . . . .. .. .. ... ... ... ...
3.4 Metrics and baselines . . . . . .. ...
3.4.1 Observed career paths . . . . . . . . .. ... L
3.4.2 Counterfactual career paths . . . . . . . . . ... ... ... ... . ...
3.4.3 Baseline 1: Greedy most common transition . . . . . .. ... ... ...
3.4.4 Baseline 2: Greedy highest expected reward . . . . . ... ... ... ..
Experiments
4.1 Naive Environment . . . . . . . . . ...
4.1.1 Baselines. . . . . . . .
4.1.2 Expected Sarsa . . . . . . ...
4.1.3 Double Q-learning . . . . . . . ...
4.2 Standard Environment . . . . ... ...
4.2.1 Baselines. . . . . . . ..
422 Deep Q-learning (DQN) . . . . . .. ..
4.2.3 Advantage Actor Critic (A2C) . . . . .. .. ..o

12
12
12
12
14
14
14
14
15
16
17
17
17
18
18



5 Conclusions 34

5.1

5.2
5.3

5.4

Learned policies . . . . . . . . . . 34
5.1.1 Naive environment . . . . . . . . .. . ... 34
5.1.2  Standard environment . . . .. ... ..o 34
5.1.3 Comparing the two environment . . . . . . . .. .. ... ... 34
Filtering the jobs . . . . . . . . . 35
Formulating the environment . . . . . . . . ... ... . o0 35
5.3.1 The cost of an action . . . . . . . .. ... 35
5.3.2 Not always working . . . . . . . . ... o 35
5.3.3 State space and the Markov property . . . . . .. ... ... .. .. ... 36
Future work . . . . . . . .. 36

i



Abstract

This thesis explores how machine learning could help employees with their career planning.
In recent years, machine learning has been used to predict employees’ future development and
recommend career paths with high potential. In this research, I aim to surpass the limitations of
previous works and develop a system with more reasonable assumptions. To do so, I formulate
the career planning process as a Markov Decision Process (MDP) and apply Reinforcement
Learning (RL) methods. The goal is to find strategies employees can use to increase their long-
term incomes. First, I train RL methods with employees and job datasets provided by Randstad
NL. Then, I evaluate the recommended by the models paths against the actual observed paths
and observe improvements of 5-6% in the mean accumulated incomes. Finally, I qualitatively
evaluate the experiments’ results, discuss the challenges I faced and provide suggestions about
future work directions.



Chapter 1

Introduction

Motivation Career planning is the process of making decisions about what a person wants
to do with their professional life and how they will accomplish it. Although not every person
has the same goals and priorities, everyone could be benefited from thinking about their career
proactively and making a plan for their next career moves. For example, if a person is interested
in maximizing their lifetime income, they should take action towards this objective and not
seek a job that only gives a higher wage in the short term. Of course, the reality is not always
that simple and usually contains multiple objectives and constraints.

Objective Success in career planning depends on how much insight one has on the set of
possible career paths and the expected payoff each one yields. The motivation of this thesis
was to utilize artificial intelligence to provide employees with such insights. Therefore, in this
thesis, I aim to propose a framework that will assist employees with their career planning
by utilizing historical data and reinforcement learning. I worked together with Randstad NL
company, a global leader in the HR services industry, to process a large amount of employees,
job applications and salary data. Then, I utilized machine learning methods to simulate the
Dutch job market and finally, I applied reinforcement learning to find strategies which will
maximize employees’ long-term incomes. As I mentioned earlier, income might not be the
only objective of one’s decision-making. However, for the scope of this research, I will assume
that employees are only looking to optimize towards one objective. Furthermore, for us, the
objective will be the total income acquired over a period of time. Of course, this research can be
extended by replacing income with another objective, such as job satisfaction, or a combination
of objectives, provided that the necessary data are available.

More precisely, my goal is to develop a system which takes as input the work experience of
an employee and gives as an output a recommended career path, a sequence of occupations and
industries, which will, on average, yield the highest income over a period of ten years. I have
decided to set the time period to ten years because I assume that the job market dynamics
are not predictable for extended periods. Thus, any recommendations beyond that timespan
might be unreliable. It is also important to note that the career path recommendations should
be feasible. This means that employees will likely be hired if they try to follow them.

Contributions This thesis is closely related to previous work of [Oentaryo et al., 2018b,
Kokkodis and Ipeirotis, 2021, Guo et al., 2022]. However, in contrast to [Kokkodis and Ipeirotis,
2021] who experimented with online freelancers and projects, I focus on long-term employment
relationships. In contrast to [Oentaryo et al., 2018b, Guo et al., 2022], which do not work with
monetary rewards, I try to find the optimal path which will yield the highest long-term income
for the employees. Additionally, [Guo et al., 2022] assumes every transition between jobs to
be possible. In my case, I assume the transitions to be a stochastic process and use methods



that learn the probabilities from the data. Finally, [Oentaryo et al., 2018b] also assumes a
stochastic process for transitions but a memoryless one. This means that a person’s next job
is independent of their previous experience, but only on their current job. In this work, I work
with two settings, the naive one which also makes this assumption and the standard one which
does not and utilize the employees’ experience to predict their next move.



Chapter 2

Background

2.1 Career development and Artificial Intelligence

Research on workforce mobility and career development has been done for decades [Topel and
Ward, 1992, Long and Ferrie, 2006, Moscarini and Thomsson, 2007, Fuller, 2008, Joseph et al.,
2012, Oentaryo et al., 2018a]. Most of these studies rely on surveys, census, tax lists, and
population registers to analyze various aspects of the workforce, such as age and wage growth.
Due to the rise of online professional networks (OPN) and the data abundance during the
last decade, many researchers have approached this area with data-hungry machine learning
methods. A significant part of the research has recently focused on modelling career paths to
predict future mobility or help candidates with their career development.

Predicting when employees will change jobs and who their next employer will be is valuable
for both parties. Candidates can utilize this information to apply for vacancies with a high
likelihood of being hired. On the other side, companies can use this information to retain their
current employees with targeted promotions or to influence their decisions during the hiring
process.

[Paparrizos et al., 2011] proposes a naive Bayes model to predict job transitions. Their tech-
nique exploits all past job transitions and the data associated with employees and institutions
to predict an employee’s next job transition (institution). Their experiments focus on the 100
companies and universities in their dataset and use the top 25 companies as classification labels.
Their results show that job transitions can be accurately predicted, significantly improving over
a baseline that always predicts the most frequent institution in the data.

[Wang et al., 2013] estimates the likelihood of an employee’s decision to make a job tran-
sition at a particular time, which is denoted as the tenure-based decision probability. The
authors propose using the proportional hazards model to tackle the problem and extend it
with a hierarchical Bayesian framework. Then they use the predictions to find out when is the
right time to make a job recommendation and how they use it to improve the utility of a job
recommender system.

In [Liu et al., 2016], the authors study the feasibility of career path prediction from social
network data. In particular, they fuse information from multiple social networks to compre-
hensively describe a user and characterize the progressive properties of his or her career path.
In addition, their model can identify the influential factors of career paths. For their experi-
ments, they collect data from LinkedIn, Facebook and Twitter, and they extract demographic,
psychological and user topic features from them.

[Li et al., 2017] propose the NEMO model for predicting a person’s next company and title.
NEMO generates a contextual representation by aggregating all the profile information and
explores the dependencies in the career paths through the Long Short-Term Memory (LSTM)
networks. Extensive experiments on a large, real-world LinkedIn dataset show that NEMO



significantly outperforms strong baselines and reveals interesting micro-level labor mobility
insights.

The authors of [Meng et al., 2019] propose a hierarchical neural network structure with an
embedded attention mechanism to predict the next employer and the duration of the placement
for employees.

[Xu et al., 2019] perform a talent flow analysis for analyzing and modelling the flows of
employees into and out of targeted organizations, regions, or industries. The authors formalize
the talent flow modelling problem to predict the increments of the edge weights in the dynamic
job transition network. In this way, the problem is transformed into a multistep time series
forecasting problem.

[Liu and Tan, 2020] proposes a logistic regression model to predict student STEM career
choices. They propose a machine learning system that automatically reformats the dataset,
generates new features and prunes redundant ones, and performs model and feature selection.

In [Al-Dossari et al., 2020], a recommendation system called CareerRec is proposed, which
uses machine learning algorithms to help I'T graduates select a career path based on their skills.
Their main idea is to calculate skill similarities between the candidates and current employees
in order to predict the candidate’s career path.

[Yamashita et al., 2022] proposes NAOMI, a model that predicts the sequence of future
job titles and companies for an employee. NAOMI uses (1) multi-view graph embeddings and
BERT embeddings from job titles and companies extracted from resumes, (2) job duration
masking to adjust the job experience, and (3) neural collaborative reasoning to represent the
multi-factors available among jobseekers’ resume graph.

Another part of the research is based on the assumption that the most frequent paths ob-
served in the data are not always the most beneficial for the employees.

In [Lou et al., 2010], the authors are proposing a method that recommends the shortest
possible career path given a person’s current job (origin) and his/her dream job. In order
to achieve this, they model people’s career developments with Markov Chain, and they use
Dijkstra’s algorithm to find the shortest feasible path.

[Oentaryo et al., 2018b] key premise is that the observed career trajectories in online profes-
sional networks may not necessarily be optimal and can be improved by learning to maximize
the sum of payoffs attainable by following a career path. Thus they propose a multi-objective
learning procedure to achieve the best tradeoff among different payoff criteria in career path
planning. The criteria they use are the transition duration cost, the level gain and the desir-
ability gain.

[Shahbazi et al., 2019] introduced a method for job allocation in a construction company
which, in contrast to conventional productivity-oriented workforce planning models, optimizes
towards the career development of employees by allowing them to grow their skillset. While
leading to a slight loss of productivity, their results show a significant improvement in the career
development of employees with on average 8.6% improvement in employees’ closeness to their
ideal skill set.

In [Gugnani et al., 2019] and [Dawson et al., 2021] authors leverage the notion of skills to
construct skill graphs. Then they use the graphs to measure the similarity between occupa-
tions using their underlying skills. Finally, they build recommendation systems for identifying
optimal transition pathways between occupations.

[Kokkodis and Ipeirotis, 2021] proposes a career development framework that combines re-
inforcement learning, Bayesian inference, and gradient boosting to provide recommendations on
how contractors should behave when choosing new skills to learn. Their framework uses market
information to estimate current and future wages for different skills, while it uses observed skill
sets to identify the feasible actions, a contractor can take to learn new skills. The proposed



approach relies on a Markov decision process (MDP) to dynamically recommend actionable
career paths. At each period, the MDP provides recommendations on how contractors should
spend their next period: (1) learn a new set of skills, (2) work using their current set of skills,
or (3) do both and learn while working.

Recently, [Guo et al., 2022] proposed a variant of RL method with a stochastic subsampling
mechanism for career path searching. They tried to optimize people’s career path by recom-
mending a sequence of companies and corresponding staying durations, which will result in the
highest accumulative reward to an individual. For their experiments, they used data from an
online professional network.

2.2 Reinforcement Learning

Navigation of the job market is a sequential decision-making task with delayed rewards. That
is because the decisions a person makes, for example, whether to take a job or not, affect not
only their immediate returns (income, happiness, etc) but also the long-term ones. This kind
of task finds a very natural fit within the Reinforcement Learning paradigm. Unlike supervised
learning, RL does not require a knowledgeable external supervisor to provide labelled examples.
And unlike unsupervised learning, RL’s objective is not to uncover a structure in the data.

As defined by [Sutton and Barto, 2018], reinforcement learning is learning what to do, how
to map situations to actions, so as to maximize a numerical reward signal. Therefore, rein-
forcement learning is happening between an agent, who acts as a learner and decision-maker,
and the environment in which the agent lives. The learner is not told which actions to take
but instead must discover which actions yield the most reward by trying them. In the most
interesting and challenging cases, actions may affect not only the immediate reward but also
the following situation and, through that, all subsequent rewards. These two characteristics,
trial and error search and delayed reward, are the two most important distinguishing features
of reinforcement learning. Beyond the agent and the environment, one can identify four main
subelements of a reinforcement learning system: a policy, a reward signal, a value function,
and, optionally, a model of the environment. A policy defines the agent’s way of behaving at a
given time. Roughly speaking, a policy is a mapping from perceived states of the environment
to actions to be taken when in those states. A reward signal defines the goal of a reinforcement
learning problem. On each time step, the environment sends to the reinforcement learning
agent a single number called the reward. The agent’s sole objective is to maximize the total
reward it receives over the long run. Whereas the reward signal indicates what is good in an
immediate sense, a value function specifies what is good in the long run. Roughly speaking,
the value of a state is the total amount of reward an agent can expect to accumulate over the
future, starting from that state. The fourth and final element of some reinforcement learning
systems is a model of the environment. This is something that mimics the behavior of the
environment, or more generally, that allows inferences to be made about how the environment
will behave. For example, given a state and action, the model might predict the resultant next
state and next reward. Models are used for planning, by which I mean any way of deciding on a
course of action by considering possible future situations before they are actually experienced.
Methods for solving reinforcement learning problems that use models and planning are called
model-based methods, as opposed to simpler model-free methods that are explicitly trial-and-
error learners-viewed as almost the opposite of planning.
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Figure 2.1: The agent-environment interaction in a Markov decision process.

2.2.1 Markov Decision Process

In order to approach the career planning problem with reinforcement learning, we need to
model it as a Markov Decision Process (MDP). This is necessary in order to take advantage
of the majority of the RL research that has be been done so far. MDPs are a mathematically
idealized form of the reinforcement learning problem for which precise theoretical statements
can be made. Therefore, most of the existing RL algorithms assume an underlying MDP.
As defined in [Sutton and Barto, 2018], MDPs are a classical formalization of sequential
decision-making, where actions influence not just immediate rewards, but also subsequent sit-
uations, or states, and through those future rewards. Thus, MDPs involve delayed reward and
the need to trade of immediate and delayed reward. MDPs are meant to be a straightfor-
ward framing of the problem of learning from interaction to achieve a goal. The learner and
decision-maker is called the agent. The thing it interacts with, comprising everything outside
the agent, is called the environment. These interact continually, the agent selecting actions
and the environment responding to these actions and presenting new situations to the agent.
The environment also gives rise to rewards, special numerical values that the agent seeks to
maximize over time through its choice of actions. If the state and action spaces of and MDP
are finite, then the MDP is called finite.
In addition, we have to formally define the objective of learning. Usually, reinforcement learn-
ing tasks can be broken into two categories, one in which there is an end (episodic tasks), and
one in which the process goes on forever (continuous tasks). An episodic task could be, for
example, a football match, where each team tries to maximize their score before the game ends.
In episodic tasks, the agent aims to maximize the expected sum of rewards before the episode
ends:

Gy =Rip1 + Riyo+ Riys +---+ Ry (2.1)

However, in continuous tasks, there is no foreseeable end. In this case, maximizing the sum of
rewards would be problematic, because the sum could easily be infinite. To tackle this problem
in continuous tasks, the concept of discounting has been used. According to this approach,
the agent tries to select actions so that the sum of the discounted rewards it receives over the
future is maximized. Now the agent tries to maximize the expected discounted return:

Gt = Rip1 +yRgo + ’72Rt+3 +-- = Z Vth+k+1 (2.2)
k=0

where 7 is a parameter, 0 < v < 1 | called the discount rate. If v < 1, the infinite sum in 2.1
has a finite value as long as the reward sequence R} is bounded.

Later below, we will see how the navigation of the job market by employees can be formalized
as Markov Decision Process.



The Markov property

In Markov Decision Processes, the probability that the process moves into its new state S’
is influenced by the chosen action. Specifically, it is given by the state transition function
P,(S,S’). Thus, the next state S’ depends on the current state S and the decision maker’s
action a. But given S and a, it is conditionally independent of all previous states and actions;
in other words, the state transitions of an MDP satisfy the Markov property.

2.2.2 Dynamic Programming

A family of algorithms which can be used to compute optimal policies for MDPs is the dynamic
programming (DP) family. As noted by [Sutton and Barto, 2018], compared with other methods
for solving MDPs, DP methods are actually quite efficient. If we ignore a few technical details,
then, in the worst case, the time that DP methods take to find an optimal policy is polynomial
in the number of states and actions. In addition, DP methods are guaranteed to f ind an
optimal policy. Linear programming methods can also be used to solve MDPs, and in some
cases their worst-case convergence guarantees are better than those of DP methods. But linear
programming methods become impractical at a much smaller number of states than do DP
methods (by a factor of about 100). For the largest problems, only DP methods are feasible.

However, DP methods require a perfect model of the MDP to be available. In our case, the
true transition probabilities and rewards of the MDP are not known, and therefore we do not
have access to the true model of the MDP. For this reason, I will only focus on RL which do
not require a model of the environment.

2.2.3 Offline reinforcement learning

Another significant limitation of our use case, is the lack of online interaction with the envi-
ronment. The typical paradigm of RL allows the agent to access the environment and interact
with it. That is, to perform actions and get back the consequences of them (new state and
reward). In our use case, while training, the agent can not interact with the environment. This
would require the training system to start making job applications on behalf of candidates and
wait for their outcomes. Therefore, we have to learn from offline historical data. This approach
is called offline reinforcement learning or batch RL. As summarized by [Levine et al., |, offline
reinforcement learning, in essence, requires the learning algorithm to derive a sufficient under-
standing of the dynamical system underlying the MDP entirely from a fixed dataset, and then
construct a policy that attains the largest possible cumulative reward when it is actually used
to interact with the MDP.

The most obvious reason why offline RL is difficult is it inability to interact with the
environment, explore new states and experiment with new actions to find high reward regions.
If the captured dataset, does not have transitions to high reward regions, then the offline RL
agent might never be able to explore them. In addition, if the agent eventually finds a novel
state outside the training distribution, it will make bigger mistakes that compound until the
policy diverges wildly from the one it was trained on. This behavior is a type of distributional
shift.

In a recent survey on offline RL, [Levine et al., | provide a helpful overview of the most
common approaches for offline RL. A graphical presentation can be found in figure 2.3.

2.2.4 On-policy and Off-policy RL

Reinforcement learning methods trying to learn a policy face a dilemma: They seek to find
the optimal actions, but to do so they need to behave non-optimally in order to explore all
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Figure 2.2: Illustration of the different reinforcement learning paradigms including (a) online
RL, (b) off-policy RL (discussed below), and (c) offline RL taken from [Prudencio et al., 2022].
In online RL, one must collect new experiences with the latest policy before updating. In
off-policy RL, an agent interacts with the environment and appends its new experiences to a
replay buffer, which can then be sampled to perform a policy update. We can reuse previous
experiences in this paradigm but still rely on a continuous collection of new experiences. In
offine RL, a behavior policy is used to collect experiences that are stored in a static dataset D.
We then learn a policy ,7; without further interactions with the environment. After learning
off » one can opt to fine-tune their policy using either online or off-policy RL methods. This
image is largely based on [Levine et al., | pictorial illustration of RL paradigms presented in
their tutorial article. Earth image made by Freepik from flaticon.com.

actions. This dilemma is being approached by two families of methods, on-policy and off-policy
methods. On-policy methods, learn action values for a near-optimal policy that they also use
to explore. On the other hand, off-policy methods use two policies. The policy which is being
learned is called the target policy and the policy which is used to explore is called the behaviour
policy. In off-policy methods, the learning is happening from data which are "off” the target
policy, which we are trying to learn, and therefore they are called ”off-policy”.

In online RL, when the agent can interact with the environment, both approaches can be
used. However, in offline RL, where we are trying to learn a target policy, with offline data
generated from a sub-optimal behaviour policy, we have to utilize off-policy methods.

2.2.5 Tabular and Approximate Solution Methods

Another decision that someone needs to make when applying RL methods is the selection
between tabular and approximate solution methods. Tabular methods can be used for environ-
ments with small state and action spaces, where the value functions can be presented as arrays
or tables. These methods can often find the optimal value function and the optimal policy.
However, for larger environments approximate solution methods are needed. For example, if
we want to apply RL to a problem where each state is an image; the number of possible states
could be larger than the number of atoms in the universe. In such cases, we can not expect
to learn the optimal value function or the optimal policy and therefore our goal is to find an
approximate solution. As noted by [Sutton and Barto, 2018], the problem with large state
and action spaces, is not just the memory needed for large arrays and the time and data to
fill them accurately. For many tasks, the space is so large that every state encountered may
have never been seen before. Therefore, we need to generalize from previous encounters with
different states that are similar to the current one. This kind of generalization is an instance
of supervised learning and is often called function approximation. In recent years, many state
of the art RL methods have been using artificial neural networks for function approximation.
This area has become popular under the name deep reinforcement learning.
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Figure 2.3: [llustration (by [Levine et al., |) of the general structure of an offline RL algorithm,
where different paths represent the decisions one can make when designing an algorithm. Ini-
tially, the behavior policy 73 interacts with the environment to collect experiences and store
them in static dataset D. Then, the data is optionally filtered (e.g., using some heuristic or
value-based approach) to retain only experiences from high-return trajectories. The remaining
samples can then be used to either directly learn a policy my, learn a dynamics model or a
model of the trajectory distribution. If we opt to learn a trajectory distribution, we can use
it for planning, which is interested in selecting the trajectories with the highest return. If
we learn a dynamics model, we can choose whether to use our model for planning or to roll
out our model and generate synthetic samples to learn a policy. Then, to learn 7y, we can
opt between actor-critic and imitation learning methods, where the latter typically relies on a
good filtering process or an appropriate outcome to condition the learned policy. Finally, in
actor-critic methods, one can opt to use single or multiple steps of policy evaluation and policy
improvement, in which one-step methods allow us to avoid distributional shift entirely. Earth
and globe images made by Freepik from flaticon.com



2.2.6 Sarsa

Sarsa is an on-policy and tabular temporal difference (TD) method. TD learning is a combina-
tion of Monte Carlo and dynamic-programming ideas. Like Monte Carlo methods, TD methods
can learn directly from raw experience without a model of the environment’s dynamics. Like
DP, TD methods update estimates based in part on other learned estimates without waiting
for a final outcome (they bootstrap). Sarsa algorithm aims to learn an action-value function
¢-(s,a) that gives the expected reward starting from the state s, taking action a and following
the policy 7. The general form of Sarsa can be found in the Algorithm 1.

Due to the random selection of A;yq, Sarsa is usually suffering from high variance. To
eliminate this issue, another version of Sarsa has been proposed. It is called Expected Sarsa
and it replaces the Q(S, A) update step with:

Q(S,A) < Q(S, A) +a |R+v)_m(als)Q(S,a) — Q(S, A)

where 7(a|S) is the probability of taking the action @ under the current policy. As noted by
[Sutton and Barto, 2018], Ezpected Sarsa usually performs slightly better than Sarsa.

Algorithm 1 Sarsa general form

Algorithm parameters: step size « € (0, 1], small € > 0
Initialize Q(s,a), for all s € S*,a € A(s), arbitrarily except that Q( terminal,-) =0
for each episode do
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
for each step of episode do
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
QS A) « Q(S,A) + a[R+7Q (5", A') = Q(S, A)]

S« SA— A,
Break if S is terminal
end for
end for

2.2.7 Q-Learning

Q-Learning was introduced by [Watkins and Dayan, 1992 as another tabular TD method.
However, Q-learning is an off-policy method. In this case, the learned action-value function,
Q, directly approximates g., the optimal action-value function, independent of the policy being
followed (behavior policy). The general form of the Q-Learning algorithm can be found in the
Algorithm 2.

Double Q-Learning

Double )-Learning ([Van Hasselt, ]) is an extension of Q-Learning which makes the learning
more stable. The max operator in standard Q-learning uses the same values both to select
and to evaluate an action. This makes it more likely to select overestimated values, resulting
in overoptimistic value estimates. To prevent this, Double Q-Learning decouples the selection
from the evaluation. Double Q-learning stores two @ functions: Q4 and @Qg. Each @ function
is updated with a value from the other () function for the next state. In this thesis, I have
implemented and experimented with Double Q-Learning.

10



Algorithm 2 Q-Learning general form
Algorithm parameters: step size « € (0, 1], small € > 0
Initialize Q(s,a), for all s € S*,a € A(s), arbitrarily except that Q( terminal,-) = 0
for each episode do
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
for each step of episode do
Take action A, observe R, S’
Q(S,A) «+ Q(S,A) + a[R+ ymax, Q (5,a) — Q(S, A)]
S« 9
Break if S is terminal
end for
end for

2.2.8 Deep Q-Learning Network (DQN)

Sarsa and Q-Learning discussed above are tabular methods. Therefore, they are not effective for
environments with large state spaces. For this reason, below we will introduce two approximate
solution methods which will be used for the standard environment. DQN was first introduced
by [Mnih et al., 2013] and it is an off-policy approximate solution method. It is the first deep
learning model to successfully learn control policies directly from high-dimensional sensory
input using reinforcement learning. The model is a convolutional neural network, trained
with a variant of Q-learning, whose input is raw pixels and whose output is a value function
estimating future rewards. [Mnih et al., 2013] applied DQN to seven Atari 2600 games and
found that it outperforms all previous approaches on six of the games and surpasses a human
expert on three of them.

2.2.9 Advantage Actor Critic (A2C)

A2C is another approximate solution RL method which utilizes deep reinforcement for function
approximation. In contrast to DQN A2C is an on-policy method. A2C was introduced by [Mnih
et al., 2016] and it is an actor-critic method. Actor-critic methods are a subset of temporal
difference (TD) learning methods that represent the policy function independent of the value
function. The "critic” model estimates the value function and the "actor” learns the target
policy. Both the Critic and Actor functions are parameterized with neural networks. As
explained in [Mnih et al., 2016], the main advantage of compared DQN is that it can be trained
significantly faster. That is the reason, I selected this method to experiment with, in addition
to DQN.
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Chapter 3

Methodology

3.1 Datasets

My experiments were performed on datasets provided by Randstad Netherlands. For this work,
I utilized the datasets described below.

3.1.1 Work experience dataset

The work experience dataset is a tabular dataset and consists of work experience items that
employees submit to Randstad through its website or its consultants. More precisely, the useful
attributes for this research in this dataset are: 1) employee ID 2) Job start and end date 3)
ISCO code ' (used as occupation identifier) 4) SBI code * (used as industry identifier). While
reprocessing this dataset, I filter out employees with missing data. In addition, I filter out jobs
with a duration of less than a week and employees with more than fifty work experience items.
Finally, the dataset consists of 200K employees with 400K work experience items.

It is important to mention that most of the work experience items (99.99%) are about
Randstad placements. These are jobs which the employees found through Randstad. This is
the case because essential attributes are missing for most of the items coming from employees’
previous experience (before using Randstad services).

Furthermore, as expected from Randstad’s business model, most of the jobs are short-term
placements. Therefore, the mean job duration is 161 days, and the median is 95 days. The
distribution of durations can be found in Figure 3.1.

Finally, in Figure 3.2, the distributions of career path’s lengths and durations can be found.
A career path is the sequence of jobs an employee has listed. As can be seen, the majority of
employees have less than 15 jobs listed and have worked, with Randstad, for less than six years.

3.1.2 Vacancies dataset

The vacancies dataset contains structured information, including offered salaries, for six million
vacancies posted on various websites in the Netherlands. This dataset is used for estimating
the expected salaries for each occupation.

The mean yearly salary is found to be 42K euros and the median 38K euros. In addition,
the mean salary for four different levels of experience is shown in Figure 3.3.

ISCO Wikipedia page : https://en.wikipedia.org/wiki/Internationalstandardclassification, foccupations
2SBI official website: https://www.kvk.nl/overzicht-standaard-bedrijfsindeling/
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Figure 3.1: Work experience dataset: Jobs duration histogram with density.
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Figure 3.2: Work experience dataset: Career paths length and duration histogram with density.
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Figure 3.3: Vacancies dataset: Mean salary for different years of experience in the Netherlands.
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3.1.3 Randstad’s vacancies dataset

This dataset is similar to the Vacancies dataset but contains information about vacancies
managed by Randstad Netherlands.

3.1.4 Job applications dataset

This dataset contains information about applications made by candidates for Randstad’s va-
cancies. For each application there is an outcome available (rejected or hired).

3.2 Markov Decision Process

To start experimenting with Reinforcement Learning we need to formulate career paths as a
Markov Decision Process. In the scope of this thesis, I experimented with two different MDP
formulations. The Naive and the Standard environments. The Naive environment is a more
simplified version of the Standard one. And the Standard one is, of course, a simplification of
the real job market. Below, I will describe the two environments.

3.2.1 Naive environment
States

At every given time, an employee has a specific job. A job is defined as the combination of
an occupation and an industry. For example, this can be a software engineer (occupation) in
banking (industry). Therefore, a state s of the MDP is defined to be a job. However, in reality
there could be up to 13000 possible jobs (130 ISCO3 occupations and 100 SBI2 industries). In
order to keep the environment in a computationally tractable size, I only keep the 142 most
common jobs (in the Work Experience dataset). Consequently, the career path of a person can
be through as a sequence of states:

SOa Sl7 sy SN

Actions

Starting from every state S, the agent has the ability to apply for any other job. An application
is formulated as the action a. In each time step, the agent has the option to apply for a new
job or stay in their current job.

Rewards

At each time step, the agent will earn a reward r. Informally, the agent’s goal is to maximize
the total amount of reward it receives. This means maximizing not the immediate reward,
but cumulative reward in the long run. For this research, the reward is the salary earned by
the employee over the time period of a time-step. Therefore, the reward can be defined as a
function of the state. More precisely, I define the reward as:

r = R(s)

Transitions

Applying to a job does not have a deterministic outcome. Therefore, the actions that the
agent takes should not have a deterministic outcome. When the agent selects an action a) and
succeeds to be hired, moves from the current state s to a new state s’. If not, stays in the
previous state s. This transition is happening with probability P(S,a,S’).
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Learning the environment dynamics

To simulate the environment, we need to learn the transition probabilities P(s|s, a) and reward
function r(s,a) from the the data. First, the reward function r(s,a) is learned from the Va-
cancies dataset using a Random Forest regression model. For the training, I use the Vacancies
dataset which contains Dutch vacancies posted on various websites. The model learns to pre-
dict the yearly salary of an employee, given their occupation (ISCO3 code) and industry (SBI2
code). The mean absolute error of the learned model is approximately 6000. Given the average
yearly is approximately 36000, I consider this error acceptable for my experiments. Obviously,
further effort can be made to develop more accurate salary prediction models; but this is not
the focus of this thesis.

Secondly, the transition probability T'(s'|s,a) depends on the job of the source s and target
s’ states. For the naive environment, Py, is calculated by counting observations in the Work
Experience dataset.

_ # People worked in A and came from B
N # People worked in B

Pnaive = P(NextState = A|PreviousState = B)

3.2.2 Standard environment
States

In the Standard environment in addition to their job, employees may have a work experience
from their previous jobs. A person’s current job j and their past work experience w form their
state. Therefore, a state s of the MDP is defined as:

s = (J,w)

Where j is the job and w the work experience of an employee. Consequently, the career path
of a person can be represented as a sequence of states:

SOa Sl) B SN

w is a vector with 130 dimensions. Each dimension represents a specific occupation (ISCO3
code) and its value represents the months of experience the employee has in this occupation.

W = (do,i, dl,i, e d129,i)

Where d},; is the months of experience an employee has in occupation £ in time step 7. To make
the work experience information more accurate, we could also add industries in the experience
vector. However, I avoided doing so because this will increase the number of dimensions of w
by 100 times (100 SBI2 industries). This addition would significantly increase the state space
of the environment and would make policy learning a lot more challenging. Finally, similarly
to the Naive environment, I only keep the 142 most common jobs.

Actions

The actions are defined similarly to the Naive environment.

Rewards

The rewards are defined similarly to the Naive environment.
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Transitions

Similarly to the Naive environment, applying to a job does not have a deterministic outcome.
Therefore, the actions that the agent takes should not have a deterministic outcome. When
the agent selects an action a = (j') and succeeds to be hired, moves from the current state
S = (j,w) to a new state S’ = (j’, w’). If not, moves to a new state S” = (j, w”) , where only
the work experience has changed. This transition is happening with probability P(S,a,S’).

Learning the environment dynamics

To simulate the environment, we need to learn the transition probabilities P(s|s, a) and reward
function r(s,a) from the the data.

For the Standard environment, similarly to the Naive, the reward function 7(s, a) is learned
from the Vacancies dataset using a Random Forest regression model.

However, the transition probabilities differ. In NaiveJobMarketEnv the transition proba-
bility T'(s'|s,a) depends only on the occupation and the industry of the source s and target
s states. Therefore, in contrast to the StandardJobMarketEnv it is independent of the past
experiences of the agent. Another difference from the NaiveJobMarketEnv, is that I estimate
and use the probability of being hired (making the transition) given that the worker applied
for the job:

Pstandara = P(hiredilnState A = True|CurrentState = B, AppliedT oA = True)

. Pstandara 18 estimated by training a binary Random Forest classifier on the Job Applications
dataset.

One important note here is that the state space of the NaiveJobMarketEnv is significantly
smaller than the one of the StandardJobMarketEnv. This is because, in the naive environment,
the transition probabilities are independent of the candidates’ past experiences W. Therefore,
W does not need to be in the state and therefore, the number of possible states is significantly
smaller.

3.3 Offline Reinforcement Learning

As discussed in Section 2.2.3, there multiple approaches for applying RL on offine data. In
this thesis, I make the assumption that an accurate model of the job market is not easy to be
created. Therefore planning is not an option and I have to proceed with using methods to learn a
policy my. In addition, I avoided proceeding with a Model-free approach, because of evaluation
difficulties that arise. Offline policy evaluation, without a model of the environment, is an
active area of research in reinforcement learning. The main difficulty here is the counterfactual
evaluation (as I propose in Section 3.4) without the access to an environment.

Therefore, in this thesis I simulate the job market environment by learning a model with
supervised learning. Then, use the learned model to make rollouts and learn a policy with
online RL methods. The high level overview of this process can be found in Figure 3.4. The
important assumption here is that, although online interaction is not available in the scope of
this thesis, it might be in the future if a recommendation system with RL becomes available
on production.

Continuous task

In reality a career path always has an end, due to death or retirement, so the career planning
process is naturally an episodic task. However, in my case I do not have any information about
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Transitions module

Naive Environment
"Calculate transition probabilities by counting transitions in
the work experience dataset.”
Standard Environment
Work Experience "Trains a model, on the jobs application dataset, to predict
Data the probability of being hired to a job with ISCO code
J given a vector of experiences W"

Reinforcement Learning module

Job Application

Data Salary prediction module

"Train an RL method to optimize the cumulative reward”

"Trains a model to predict the mean salary for a job with a
specific Function (ISCO-3 code) and Industry (SBI2)."

Vacancies Data

I

Plausible jobs module

'Creates a dataset with plausible pairs of ISC0-3 and SBI-2
codes”. A pair is consider plausible if it has been observed
at least 500 times in the dataset”

Figure 3.4: A high-level diagram of the various modules which are used for the experiments.

employees’ age in my dataset, and therefore I do not know when the ”episodes” should end.
Therefore, in this research I will formulate the career planning process as a continuous task.
As mentioned in the previous chapter (2.2), in continuous tasks, a discount rate ~ is being used
for rewards. In my case, this discount factor accounts for inflation. Finally, for my simulations,
I assume that the agent will make a decision (to apply for a new job or stay in their current
job) every 3 months. Therefore, I work with 3-months time steps.

3.4 Metrics and baselines

The purpose of the methods discussed is to recommend feasible career paths which yield high
incomes for the worker who will follow them. Therefore, to evaluate these methods, I mea-
sure the difference between the cumulative income that the observed paths (factuals) and the
recommended paths (counterfactuals) yield.

3.4.1 Observed career paths

I use the Work Experience dataset to construct a list of observed career paths and the income
that each one produced. However, workers often have more than one job in parallel or have
periods of unemployment. Therefore, given that in my MDPs the agent can not be unemployed
or work in multiple jobs in parallel, I have to process the observed paths to make them com-
parable with the recommended ones. If a worker has multiple jobs in parallel, then I would
estimate the monthly salary of each job (40 hours per week) and then assume they made the
mean of them. For periods of unemployment, I assume the worker kept on making the salary
from their last job.

Finally, due to the lack of quality salary data for the observed paths, I use the Regression
Model from Section 3.2.1 to estimate the mean salary of each job based on its function and
industry.

3.4.2 Counterfactual career paths

After training a model with each RL method discussed before, I sample a number of observed
career paths and generate their counterfactuals. As a counterfactual path, I define the path
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that each model recommends starting from the same initial job as the observed one and having
the same duration.

In addition, to the trained RL models, I introduce two simple baseline methods which
generate counterfactual career paths. I follow the same process to evaluate the baseline methods
against the observed career paths.

3.4.3 Baseline 1: Greedy most common transition

In this method, the agent always selects to apply to the job with the highest transition prob-
ability. If there are multiple jobs ranking at the top, then one of them is selected randomly
every time.

3.4.4 Baseline 2: Greedy highest expected reward

In this method, the agent always selects to apply to the job with the highest expected reward.
The expected reward for each job is defined as the product of the transition probability and
the immediate reward (salary) the agent will receive after the transition. If there are multiple
jobs ranking at the top, then one of them is selected randomly every time.
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Chapter 4

Experiments

In this chapter, I present the results from the experiments I ran using the two environments
described in Section 3.2. Namely, the Naive and the Standard environments. For each of
the environments, I report the results from the two baseline methods described in Section 3.4.
Then, I report the results from the methods I applied in order to learn a competent policy. More
specifically for each environment-method pair I ran and report and the following experiments:

Starting vs Final Function/Industry distribution For this experiment, I run 1000
episodes for 40 time steps (10 years), using a specific model, and report the starting and the
final functions and industries distributions using histograms. As a reference point, in Figure 4.1
I present the Starting vs Final Function/Industry histograms for the real observed career paths
in my dataset. These histograms are useful in order to detect and understand the model’s
preferences towards specific functions and industries.

Transitions Graph Similarly to the previous experiment, I run 1000 episodes for 40 timesteps
(10 years), with a specific model, and reported the frequency of transitions between functions
and industries. However, in contrast with the previous experiment, I report all the transitions
which are happening during the episodes. Again, as a reference point in Figure 4.2, I present
the Transitions Graph for the observed career paths in my dataset. The width of the edges rep-
resents the frequency of the transition between the nodes; the higher the frequency the bigger
the edge.

Counterfactual evaluation Finally, as described in Section 3.4 I sample 20000 employ-
ees and I generate their counterfactual paths. Then I compare the mean reward (in Euros)
accumulated in the real and the counterfactual world. If there is a significant difference (p-
value < 0.05) I also sample, present and qualitatively compare the career paths of some of the
employees whose income increased (Gainers) and some whose income decreased (Losers).

The reported metrics can be show in Table 4.1 for the Naive environment and in Table 4.7
for the Standard one. For each model, I present the Mean Factual accumulated reward and the
Mean Counterfactual one. That is the mean income employees accumulated in the real world
and the one that they would have accumulated in the counterfactual world. Next, I present the
Change % between the two means and p-value from the two sided permutation test I perform
in order to understand if there is statistically significant difference between the two. Finally,
I report the percentage of employees who saw an positive change in the counterfactual world
(Gainers) and the mean of this changes. I do the same for those who saw a negative change
(Losers).

As mentioned above, I also present some samples of factual and counterfactual paths. For
example in Table 4.3 I present a sample of employees whose income would have been increased
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Model Mean Factual € Mean CF € Change % p-value Gainers % Mean Gain % Losers % Mean Loss %

Baseline: Most Common 90283.42 89644.81 -0.7 0.69 8.85 8.17 11.62 -8.40
Baseline: Highest Exp. Reward 90283.42 89434.75 -0.94 0.59 8.39 7.50 12.52 -8.48
Double Q-Learning 90283.42 95077.13 5.3 0.01 27.53 13.81 12.56 -7.63
Expected Sarsa 90283.42 94836.08 5.04 0.01 32.84 11.50 10.95 -7.46

Table 4.1: Naive Environment: Factual vs Counterfactual career paths. The metrics reported
are described in Section 3.4.

if they had followed the policy suggested by the Sarsa model. The same I do for people whose
income would have been decreased in Table 4.4. The first two columns consist of the employee
identifier and the uplift (positive or negative) that the employee would have gained in the
counterfactual world. Then, each sub-row for the rest of the columns is a time step (with
duration reported in the last column) and shows the jobs that the employee had in the two
worlds (factual and counterfactual). Lastly, the columns Factual € and CF € show the income
the person accumulated in the two worlds during this period of time. One important note is
that in the factual world a employee can have more than one job in parallel. If that is the
case, then their income is calculated by averaging the salaries of the different jobs. In the
counterfactual world, a person can have only one job at a time.

4.1 Naive Environment

Starting with the Naive Environment, I implemented and trained two models with Double Q-
Learning and Expected Sarsa methods. The hyperparameters used for training were selected
using grid search and can be found in Table 4.2. Then, I evaluated the learned policies against
the baselines and reported the result below. In Table 4.1, I present the results from the
Counterfactual evaluation for each method on the Naive Environment. Subsequently, in the
following subsections, I present more insights into each experiment described above.

4.1.1 Baselines

As can be observed from Table 4.1, the baseline methods do not yield any significant changes
compared to the factual career paths. In addition, by looking into the Starting vs Final distribu-
tion figures (Figures 4.3 and 4.5) we can see that there are not significant differences compared
to the observed career paths (Figure 4.1). That means that the baseline models preferences
match those of the real world. Finally, the Transitions graphs (Figures 4.4 and 4.6) show that
the two models work as expected. First, the Greedy most common, always selects the action
with the highest transition probability, and almost always, that is to stay in the current func-
tion/industry. This is validated by Figure 4.4. Secondly, the Greedy highest expected reward
baseline, follows a similar behavior. This is expected because almost always the transition
probability for staying in the current function/industry is significantly larger than the second
most common. This means that all the transitions which offer higher rewards would, almost
never, be selected as their expected reward (P(s'|s,a) * R(s")) would be significantly smaller.
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Figure 4.3: Naive Environment - Greedy Most Common Baseline: Starting and Final

distributions for the 12 most common functions and industries. The data were generated by
running 1000 episodes of 40 time steps (10 years) each.
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Method Episodes Learning rate -~ Init e e discount rate min e
Double Q-Learning 100M 0.05 0.99 0.9 10e-8 0.1
Exp Sarsa 100M 0.05 0.99 0.9 10e-8 0.1

Table 4.2: Hyperparameters for Q-Learning and Sarsa training on the Naive environment.

4.1.2 Expected Sarsa

After training a model with the Ezxpected Sarsa algorithm and with the hyperparameters dis-
played in Table 4.2, I performed the aforementioned experiments. As can be seen from Fig-
ure 4.7 and Figure 4.8 the model prefers certain functions (such as finance and software) and
industries (such as the public administration industry). From Table 4.1 we can see that the
mean counterfactual income has increased by 5.04% compared to the mean factual income.
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832 - Car, Van and Maotorcycle Drivers

711 - Building Frame and Related Trades...
516 - Other Personal Services Workers

911 - Domestic, Hotel and Office Cleaners. ..
834 - Mobile Plant Operators

821 - Assemblers

432 - Material Recording and Transport Clerks
933 - Transport and Storage Labourers

411 - General Office Clerks

422 - Client Information Workers

932 - Manufacturing Labourers

000 005 0io 015 0.00 005 010 015
Frequency Frequency
Starting industry Final industry

42 - Civil engineering

25 - Manufacture of fabricated metal...

88 - Social work activities without. .

29 - Manufacture of motor vehicles, ..

65 - Insurance, reinsurance and pension..
74 - Other professional, scientific and...
49 - Land transpert and transport via...
53 - Postal and courier activities

10 - Manufacture of food products

86 - Human health activities

52 - Warehousing and support activities. .
&4 - Financial service activities, except...
47 - Retail trade, except of mator...

46 - Whaolesale trade, except of motor...
B85 - Education

84 - Public administration and defence;...

000 005 010 015 020 025 030 000 005 010 0I5 020 025 030
Frequency Fraquency

Figure 4.7: Naive Environment - Expected Sarsa: Starting and final distributions for the

12 most common functions and industries. The data were generated by running 1000 episodes
of 40 time steps (10 years) each.
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Figure 4.8: Naive Environment - Expected Sarsa: A directed graph, showing the tran-
sitions between the 15 most common functions and industries. The data were generated by
running 1000 episodes of 40 time steps (10 years) each.

Factual € CF € Months
Candidate Uplift % Factual Job CF Job
i . L (Material Recording and...(F432)-(146)) 62531 62531 21
5340607 9887 (Material Recording and...(F432)-146) (Material Recording and...(F432)-(147)) 17866 18464 6
: (Transport and Storage...(F933)-153) (Material Recording and...(F432)-(147)) 37200 46160 15
(Manufacturing Laborers(F932)-(124)) 52080 91504 21
. . Client Information Workers(F422)-(164 163026 163026 54
6564102 15.52 (Client Information Workers(F422)-164) EFinance Professionals(F24l)(—(164))) (164)) 79456 109008 24
(Manufacturing Labourers(F932)-I70) (Manufacturing Labourers(F932)-(I70)) 8731 8731 3
7824790 19.60 (Manufacturing Laborers(F932)-182), (Man- (Manufacturing Laborers(F932)-(I70)) 7778 8731 3
ufacturing Laborers(F932)-170)
(Manufacturing Laborers(F932)-182) (Manufacturing Laborers(F932)-(I70)) 85704 104772 36
(Transport and Storage...(F933)-(149)) 20391 20391 9
7941359 20.16 (Transport and Storage...(F933)-149) (Transport and Storage...(F933)-(146)) 6797 6921 3
(Material Recording and...(F432)-(146)) 47579 62531 21
. Manufacturing Labourers(F932)-(I52 25896 25896 12
8034214 21.31 (Manufacturing Labourers(F932)-152) EMaterial Recording and...((F432))—((I52)))) 15318 60494 21

Table 4.3: Naive Environment - Expected Sarsa: Factual and Counterfactual paths for a
sample of 10 employees whose income has increased in the CF world.

Factual € CF € Months
Candidate Uplift % Factual Job CF Job
6084922 -18.30 (General Office Clerks(F411)-184) (General Office Clerks(F411)-(184)) 107184 107184 36
(Government Regulatory...(F335)-184) (General Office Clerks(F411)-(I84)) 231724 169708 57
(Client Information Workers(F422)-170) (Client Information Workers(F422)-(I70)) 16600 16600 6
7599315 -15.27 (Client Information Workers(F422)-184), (Client Information Workers(F422)-(I70)) 9040 8300 3
(Client Information Workers(F422)-170)
(Client Information Workers(F422)-184) (Cliont Information Workers(F422)-(170)) 131105 107900 39
(General Office Clerks(F411)-1I86) (General Office Clerks(F411)-(186)) 16820 16820 6
7763946 -25.99 ) X (General Office Clorks(F411)-(186)) 25938 16820 6
(Finance Professionals(F241)-169)
(General Office Clerks(F411)-(184)) 38907 26796 9
7867289 38.98 (Transport and Storage...(F933)-152) (Transport and Storage...(F933)-(I52)) 6827 6827 3
. (Social and Religious...(F263)-184), (Trans- (Transport and Storage...(F933)-(152)) 138624 81924 36
port and Storage...(F933)-152)
(Client Information Workers(F422)-161) (Client Information Workers(F422)-(I61)) 7265 7265 3
7888747 2458 (Building and Housekeeping...(F515)-I147) (Client Information Workers(F422)-(I161)) 15454 14530 6
. (Sales and Purchasing Agents...(F332)-135) (Client Information Workers(F422)-(I61)) 38439 21795 9
(Client Information Workers(F422)-(184)) 76878 60510 18

Table 4.4: Naive Environment - Expected Sarsa: Factual and Counterfactual paths for a
sample of 10 employees whose income has decreased in the CF world.

4.1.3 Double Q-learning

Similarly to Sarsa, after training a model with the Double @Q-learning algorithm and with the
hyperparameters displayed in Table 4.2, I performed the aforementioned experiments. As can be
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seen from Figure 4.9 and Figure 4.10 the model prefers certain functions and industries. Namely,
the legal and finance occupations and the public administration industry. From Table 4.1 we
can see that the mean counterfactual income has increased by 5.3% compared to the mean

factual income.

Starting function

Final function

513 - Waiters and Bartenders

313 - Process Control Technicians

325 - Other Health Associate Professionals
261 - Legal Professionals

516 - Other Personal Services Workers

524 - Other Sales Workers

832 - Car, Van and Motorcycle Drivers

711 - Building Frame and Related Trades...
241 - Finance Professionals

911 - Domestic, Hotel and Office Cleaners...
821 - Assemblers

432 - Material Recording and Transport Clerks
411 - General Office Clerks

933 - Transport and Storage Labourers

422 - Client Information Workers

932 - Manufacturing Labourers

0.10 015
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Starting industry
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43 - Specialized construction activities
26 - Manufacture of computer, electronic...
24 - Manufacture of basic metals

96 - Other personal service activities

29 - Manufacture of motor vehicles, ..

53 - Postal and courier activities

86 - Hurman health activities

52 - Warehousing and support activities..
&4 - Financial service activities, except...
10 - Manufacture of foed products

48 - Land transport and transport via...
46 - Wholesale trade, except of motor...
47 - Retail trade, except of mator._.

B85 - Education

84 - Public administration and defence; ...

0.0 02 03
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Figure 4.9: Naive Environment - Double Q-Learning:
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Frequency

T
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Starting and final distributions

for the 12 most common functions and industries. The data were generated by running 1000

episodes of 40 time steps (10 years) each.
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Figure 4.10: Naive Environment - Double Q-Learning: A directed graph, showing the
transitions between the 15 most common functions and industries. The data were generated

by running 1000 episodes of 40 time steps (10 years) each.
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Factual € CF € Months
Candidate Uplift % Factual Job CF Job
(General Office Clerks(F411)-184) (General Office Clerks(F411)-(184)) 89320 89320 30
(Gex'leral Office Clerks(F411)-I85) (General Office Clerks(F411)-(184)) 55986 62524 21
276256 12.93 (Wafters and Bartenders(F513)-155) (General Office Clerks(F411)-(184)) 14384 17864 6
(Waiters and Bartenders(F513)-155), (Other (General Office Clerks(F411)-(184)) 7521 8932 3
Sales Workers(F524)-155), (Other Sales
‘Workers(F524)-156)
(Other Sales Workers(F524)-155), (Other (General Office Clerks(F411)-(184)) 15047 17864 6
Sales Workers(F524)-156)
(Waiters and Bartenders(F513)-146) (General Office Clerks(F411)-(I84)) 292296 339416 114
(General Office Clerks(F411)-I78), (Client (General Office Clerks(F411)-(I78)) 8196 8937 3
2906652 11.29 Information Workers(F422)-182)
. . . (General Office Clerks(F411)-(I78)) 56119 62559 21
(Client Information Workers(I7422)-182) (General Office Clerks(F411)-(184)) 64136 71456 24
. . ) B (Client Information Workers(F422)-(I61)) 21795 21795 9
7502099 17.65 (Client Information Workers(F422)-161) (General Office Clerks(F411)-(I84)) 72650 89320 30
(Other Elementary Workers(F962)-(153)) 14124 14124 6
8100517 21.66 (Other Elementary Workers(F962)-153) (General Office Clerks(F411)-(I84)) 63558 80388 o7
. R (Client Information Workers(F422)-(I61)) 29060 29060 12
8242420 11.47 (Client Information Workers(F422)-161) (General Office Clerks(F411)-(184)) 29060 35798 12

Table 4.5: Naive Environment - Q-Learning: Factual and Counterfactual paths for a
sample of 10 employees whose income has increased in the CF world.

Factual € CF € Months
Candidate Uplift % Factual Job CF Job
(Transport and Storage...(F933)-184), (Client Information Workers(F422)-(184)) 10049 10085 3
(Client Information Workers(F422)-184)
(Client Information Workers(F422)-165) (Client Information Workers(F422)-(184)) 42008 40340 12
5249751 -24.59 (General Office Clerks(F411)-184) (Client Information Workers(F422)-(184)) 35728 40340 12
(Legal, Social and Religious...(F341)-184) (Client Information Workers(F422)-(184)) 11276 10085 3
(Legal, Social and Religious...(F341)-184), (Client Information Workers(F422)-(184)) 14424 10085 3
(Administration Professionals(F242)-184)
L . . (Client Information Workers(F422)-(I84)) 28928 20170 6
(Administration Professionals(I242)-184) (General Office Clerks(F411)-(I84)) 173568 107184 36
j . ] (Legal Professionals(F261)-(I84)) 28898 28898 6
5759008 -34.71 (Legal Professionals(I7261)-184) (General Office Clerks(F411)-(I84)) 288980 178640 60
B R . ) B (Client Information Workers(F422)-(184)) 10085 10085 3
7669982 10.71 (Client Information Workers(F422)-184) (General Office Clerks(F411)-(I84)) 151275 133980 45
8483505 -20.52 (Process Control Technicians(F313)-110) E;rgsiichﬁxi?kzﬁzﬁ?;ﬁ;ﬁ%ﬁgg{?ﬁ(()I)I)O)) 42238 32228 lg
8674767 -23.00 (Shop Salespersons(F522)-147), (Sales and (Shop Salespersons(F522)-(147)) 8924 7716 3
: Purchasing Agents...(F332)-114)
(Sales and Purchasing Agents...(F332)-147), (Shop Salespersons(F522)-(147)) 31158 23148 9

(Sales and Purchasing Agents...(F332)-114)

Table 4.6: Naive Environment - Q-Learning: Factual and Counterfactual paths for a
sample of 10 employees whose income has decreased in the CF world.

4.2 Standard Environment

Next for the Naive Environment, I trained two models with Deep Q-Learning and Advantage

Actor Critic methods.

The implementations used are from the Stable Baselines 3 project

([Raffin et al., 2021]). The hyperparameters used for training where selected using grid search
and can be found in Table 4.8. Then, I evaluated the learned policies against the baselines and
reported the result below. In Table 4.7, I present the results from Counterfactual evaluation
for each method on the Standard Environment. Subsequently, in the following subsections, I
present more insights for each experiment described above.

Model Mean Factual € Mean CF € Change % p-value Gainers % Mean Gain % Losers % Mean Loss %
Baseline: Most Common 90386.16 95871.78 6.18 0.02 71.07 17.27 25.15 -13.39
Baseline: Highest Exp. Reward 90386.16 161774.45 79.18 0.00 96.01 80.37 0.04 -11.44
Deep Q-Learning 90283.42 94547.94 4.7 0.01 67.91 16.95 27.87 -13.71
A2C 90283.42 95616.29 5.9 0.00 70.82 17.22 25.35 -13.64

Table 4.7: Standard Environment: Factual vs Counterfactual career paths. The metrics
reported are described in Section 3.4.
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4.2.1 Baselines

In contrast to the Naive environment here the baselines show significant improvements for the
counterfactual career paths. One important difference here is that the Most Common baseline
is not choosing the most common transition, but the one with the highest probability. This
probability is the one learned from the job applications dataset. The details are in Section 3.2.2.
Therefore, the baseline does not reflect what most people are doing. Instead it applies for the
job which the agent is more likely to be hired. The same probabilities are, of course, used for
the Highest Expected Reward baseline.

Most Common baseline, as can been seen from Figures 4.11 and 4.12 it does not have a strong
preference towards specific functions or industries. However, the Highest Ezpected Reward has
a strong preference toward the Finance function (241) and the Public Administration industry
(84). This is happening because, the estimated transition probabilities have a low variance and
therefore the expected reward (P(s|s,a) * R(s’)) is mainly influenced by the rewards. In this
specific environment, the Finance jobs in the Public administration industry are the highest in
terms of salaries. Therefore, the model always aims for them.

Greedy most common

Starting function Final function

513 - Waiters and Bartenders

516 - Other Personal Services Workers

832 - Car, Van and Maotorcycle Drivers

431 - Numerical Clerks

834 - Mobile Plant Operators

241 - Finance Professionals

711 - Building Frame and Related Trades...
911 - Domestic, Hotel and Office Cleaners...
821 - Assemblers

432 - Material Recording and Transport Clerks
411 - General Office Clerks

4232 - Client Information Workers

933 - Transport and Storage Labourers

932 - Manufacturing Labourers

000 005 o0le 015 020 000 005  0lo 015 020
Frequency Frequency

Starting industry Final industry

25 - Manufacture of fabricated metal...
29 - Manufacture of motor vehicles, ..

82 - Office administrative, office support...
53 - Postal and courier activities

T8 - Employment activities

&4 - Financial service activities, except...
52 - Warehousing and support activities_.
48 - Land transport and transport via...
10 - Manufacture of food products

85 - Education

86 - Human health activities

47 - Retail trade, except of motor._.

46 - Wholesale trade, except of motor...
B4 - Public administration and defence; ...

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.000 D.025 0.050 0.075 0.100 0.125 0.150
Frequency Frequency

Figure 4.11: Standard Environment - Greedy Most Common Baseline: Starting and

final distributions for the 12 most common functions and industries. The data were generated
by running 1000 episodes of 40 time steps (10 years) each.
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Functions Industries

Figure 4.12: Standard Environment - Greedy Most Common Baseline: A directed
graph, showing the transitions between the 15 most common functions and industries. The
data were generated by running 1000 episodes of 40 time steps (10 years) each.

Greedy highest expected reward

Starting function Final function

241 - Finance Professionals EE—

516 - Other Personal Services Workers 1

711 - Building Frame and Related Trades... 4
B32 - Car, Van and Motorcycle Drivers 9

441 - Other Clerical Support Workers 9

B34 - Mobile Plant Operators 4

511 - Domestic, Hotel and Office Cleaners... 1
821 - Assemblers 1

432 - Material Recording and Transport Clerks 1
411 - General Office Clerks 1

933 - Transport and Storage Labourers 4

4232 - Client Information Workers 1

932 - Manufacturing Labourers 9

00 02z 04 06 08 1000 02 04 06 08 10
Frequency Frequency
Starting industry Final industry

29 - Manufacture of motor vehicles, . 1

53 - Postal and courier activities 1

96 - Other personal service activities 1

64 - Financial service activities, except... 4
52 - Warehousing and support activities. . 9
86 - Human health activities R

48 - Land transport and transport via... 4
10 - Manufacture of food products 9

85 - Education R

47 - Retail trade, except of motor._. 9

46 - Whaolesale trade, except of motor... 4

84 - Public administration and defence; —

T T T — | T T T T
0.0 02 0.4 06 0.8 10 00 02 04 06 0.8 10
Frequency Frequency

Figure 4.13: Standard Environment - Greedy Highest Expected Reward Baseline:
Starting and final distributions for the 12 most common functions and industries. The data
were generated by running 1000 episodes of 40 time steps (10 years) each.
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Figure 4.14: Standard Environment - Greedy Highest Expected Reward Baseline: A
directed graph, showing the transitions between the 15 most common functions and industries.

The data were generated by running 1000 episodes of 40 time steps (10 years) each.

4.2.2 Deep Q-learning (DQN)

As can be seen from Table 4.7, DQN managed to learn a policy which increased the mean
However, it did not manage to outperform the two baseline
methods. I assume this is because this method was not as able to learn, in the given training
time, the dynamics of environment which would have enabled it to exploit the environment in

cumulative income by 4.7%.

the way the Highest Fxpected Reward baseline did.

Method Episodes
DQN 40M
A2C 40M

Learning rate -~
0.01
0.01

0.99 0.9
0.99 0.9

Init e e discount rate min e
10e-8 0.1
10e-8 0.1

Table 4.8: Hyperparameters for DQN and A2C training on the Standard environment.
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Starting function

Final function

325 - Other Health Associate Professionals
232 - Vocational Education Teachers

341 - Legal, Social and Religious Associate.
233 - Secondary Education Teachers

516 - Other Personal Services Workers

721 - 5heet and Structural Metal Workers,...
541 - Protective Services Workers

441 - Other Clerical Support Workers

711 - Building Frame and Related Trades...
241 - Finance Professionals

834 - Mobile Plant Operators

911 - Domestic, Hotel and Office Cleaners...
821 - Assemblers

432 - Material Recording and Transport Clerks
411 - General Office Clerks

933 - Transport and Storage Labourers

422 - Client Information Workers

932 - Manufacturing Labourers
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Frequency
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26 - Manufacture of computer, electronic...
31 - Manufacture of furniture

42 - Civil engineering

43 - Specialized construction activities

88 - Social work activities without. ..

25 - Manufacture of fabricated metal._..

96 - Other personal service activities

82 - Office administrative, office support...
53 - Postal and courier activities

52 - Warehousing and support activities_.
64 - Financial service activities, except...
10 - Manufacture of foed products

48 - Land transport and transport via...

86 - Human health activities

46 - Wholesale trade, except of motor...
47 - Retail trade, except of motor._.

85 - Education

84 - Public administration and defence; ...
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Frequency
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Figure 4.15: Standard Environment - Deep Q-Learning: Starting and final distributions
for the 12 most common functions and industries. The data were generated by running 1000

episodes of 40 time steps (10 years) each.
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Figure 4.16: Standard Environment - Deep Q-Learning: A directed graph, showing the
transitions between the 15 most common functions and industries. The data were generated
by running 1000 episodes of 40 time steps (10 years) each.

4.2.3 Advantage Actor Critic (A2C)

Similarly to the DQN method, A2C managed to learn a policy which increased the mean
cumulative income by 5.9%. Although this a little improvement compared to DQN, it did not



Factual € CF € Months

Candidate Uplift % Factual Job CF Job
(Manufacturing Labourers(F932)-178), (Assemblers(F821)-(125)) 8106 8375 3

(Assemblers(F821)-125)

1164170 26.72 (Assemblers(F821)-125) (Software and Applications...(F251)-(I86)) 125625 203115 45
. (Domestic, Hotel and Office...(F911)-I81) (Software and Applications...(F251)-(I86)) 21486 40623 9
(Business Services Agents(F333)-125) (Software and Applications...(F251)-(I86)) 227940 270820 60
(General Office Clerks(F411)-187) (Software and Applications...(F251)-(I86)) 152424 243738 54
(Client Information Workers(F422)-146) (Software and Applications...(F251)-(I86)) 70002 121869 27
(General Office Clerks(F411)-(184)) 8932 8932 3
7826842 47.63 (General Office Clerks(F411)-184) (Software and Applications...(F251)-(I86)) 107184 162492 36
. ] (Manufacturing Labourers(F932)-(196)) 7190 7190 3
7873140 93.39 (Manufacturing Labourers(F932)-196) (Administration Professionals(F242)-(184)) 86280 173568 36
. j (Transport and Storage...(F933)-(I53)) 7440 7440 3
8046614 74.55 (Transport and Storage...(F933)-153) (Software and Applications...(F251)-(I86)) 74400 135410 30
. . . B (Client Information Workers(F422)-(I61)) 7265 7265 3
8509834 10.78 (Client Information Workers(F422)-161) (General Office Clerks(F411)-(I47)) 36325 41030 15

Table 4.9: Standard Environment - Deep Q-Learning: Factual and Counterfactual paths

for a sample of 10 employees whose income has increased in the CF world.

Factual € CF € Months
Candidate Uplift % Factual Job CF Job
i } (General Office Clerks(F411)-(I184)) 8932 8932 3
7704548 19.94 (General Office Clerks(F411)-184) (Manufacturing Laborers(F932)-(122)) 125048 98336 42
eneral ce Clerks - enera. ce Clerks -
G 1 Office Clerks(F411)-185 G 1 Office Clerks(F411)-(I85 7998 7998 3
ales, Marketing an ublic... - s eavy Truck an us Drivers -
Sal Marketi d Publi F243)-185 H Truck d Bus Dri F833)-(149 8401 7496 3
8254475 -13.51 (General Office Clerks(F411)-185)
ales, Marketing and Public... - eavy Truck an us Drivers -
Sal Marketi d Publi F243)-185 H Truck d Bus Dri F833)-(149 12131 7496 3
enera ce Clerks - eavy Truck an us Drivers -
G I Office Clerks(F411)-185 H Truck d Bus Dri F833)-(149 31992 29984 12
(Creative and Performing...(F265)-165) (Heavy Truck and Bus Drivers(F833)-(149)) 18058 14992 6
R . . (University and Higher...(F231)-(I85)) 12547 12547 3
s ° ) anufacturing Laborers - 5
8498112 36.68 (University and Higher...(F231)-185) M £ Lab F932)-(122 62735 35120 15
8554415 10.21 (General Office Clerks(F411)-149), (Trans- (Transport and Storage...(F933)-(146)) 7685 6921 3
e port and Storage...(F933)-146)
(General Office Clerks(F411)-149) (Manufacturing Laborers(F932)-(122)) 31316 28096 12
. R (Client Information Workers(F422)-(184)) 10085 10085 3
8801913 -15.17 (Client Information Workers(F422)-184) (Manufacturing Laborers(F932)-(122)) 10085 7024 3

Table 4.10: Standard Environment - Deep Q-Learning: Factual and Counterfactual paths

for a sample of 10 employees whose income has decreased in the CF world.

manage to outperform the two baseline methods either. As mentioned before, I assume this is
because this method was not as able to learn, in the given training time, the dynamics of the
environment which would have enabled it to exploit the environment in the way the Highest
FExpected Reward baseline did.
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Starting function Final function

241 - Finance Professionals

541 - Protective Services Workers

513 - Waiters and Bartenders

516 - Other Personal Services Workers

911 - Domestic, Hotel and Cffice Cleaners...
313 - Process Control Technicians

524 - Other Sales Workers

711 - Building Frame and Related Trades...
B34 - Mobile Plant Operators

821 - Assemblers

432 - Material Recording and Transport Clerks
411 - General Office Clerks
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Figure 4.17: Standard Environment - A2C: Starting and final distributions for the 12 most
common functions and industries. The data were generated by running 1000 episodes of 40
timesteps (10 years) each.
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Figure 4.18: Standard Environment - A2C: A directed graph, showing the transitions
between the 15 most common functions and industries. The data were generated by running
1000 episodes of 40 timesteps (10 years) each.
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Chapter 5

Conclusions

Finally, I will discuss some conclusions I made through this research and the limitations I faced.
Lastly, I will suggest some options which I think are interesting to be explored in the future.

5.1 Learned policies

As presented in the previous chapter, the methods I experimented with managed to learn
policies which increase employees’ incomes in the counterfactual world. Below I will discuss
some conclusions I made by observing the learned policies.

5.1.1 Naive environment

In the Naive environment, the learned policies (Q-Leaning and Sarsa) manage to improve the
mean accumulated by 5 — 6%. This is not a huge increase, but it is significant on big time
scales, for example a lifetime. In addition, these methods managed to outperform the baselines.

5.1.2 Standard environment

On the Standard environment, the results are different from the Naive one. The two methods
I used (DQN and A2C) managed to find policies which improve the counterfactual incomes by
4.5 — 6%. However, the baselines yield significantly bigger improvements. The Highest Exp.
Reward baseline show improvements of 79% in the mean accumulated income. This observation,
together with the observations from Figures 4.13 and 4.14 raise questions about the truthiness
of the environment. As can be seen from the figures as mentioned earlier, the Highest Ezp.
Reward method achieves such high improvements by driving all employees towards Finance
jobs in the Public Administration industry. Of course, the fact that the environment allows
every employee, no matter their background, to achieve such a job means that are flaws in the
learned environment dynamics.

After some investigation, I found this problem’s root cause to be related to the data used to
train the classification model which predicts the transitions probabilities (Section 3.2.2). The
issue seems to be that many empty candidate profiles exist, which I can not simply discard.
That is because I can not distinguish between people with no prior work experience and those
with experience who did not list it on their profile.

5.1.3 Comparing the two environment

One important thing to mention is that the experiments’ results from the two environments
can not be compared directly. This is because each method is trying to learn a policy which
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will exploit the dynamics of the environment it is trained on. Therefore, the ground truth is
different for each environment. Consequently, the experiment results can only be compared in
the scope of a specific environment.

5.2 Filtering the jobs

All the experiments I presented were performed by using only the 142 most common jobs in
our datasets. This number was selected by keeping only jobs that appear at least 500 times
in the data. Initially, I tried avoiding such filtering but faced two serious issues. The first one
was the large state space. In the ISCO classification system there are 130 occupations on the
ISCO3 level. In the SBI2 industry classification system there are 100 industries. That means
there are 13000 (130 % 100) possible jobs. If we use all of them, we have at least 13000 states
and 13000? transitions that our models should learn to navigate. In the Naive environment, I
experimented with the two tabular methods (Q-Learning and Sarsa) and by training them with
larger states, I could not get good policies within 24 hours of training. The second issues that
arose, was in the Standard environment. There, the transitions prediction model I trained on
the job applications dataset was unable to make sensible predictions for less common jobs. For
example, it overestimated candidates’ probability of being hired as medical doctors. That was
probably because the dataset had very few and noise data about these positions. This resulted
in policies where the agent every time was trying - and eventually was achieving - to become a
doctor because it was a job with high rewards.

5.3 Formulating the environment

The reinforcement learning theory is strongly tied to an underlying Markov Decision Process
(MDP) framework. However, to use reinforcement learning for career path recommendations,
we have to tackle the many challenges that arise when formulating the job market as an MDP.
I will present some that I face below.

5.3.1 The cost of an action

An assumption I made during this research is that there is no monetary cost for applying to a
job. Obviously in reality, this is not true. Applying for a job takes time from other activities
which can yield income for an employee. For example an employee might need to take a day off
to attend an interview. Therefore, to have a formulation closer to reality, we have to estimate
this cost and consider it when generating the rewards of the environment. Of course, in reality,
there are other costs involved too. This could be, for example, lost family time or resting time.
However, in the context of this thesis, I assumed that employees only focus on optimizing their
incomes.

5.3.2 Not always working

Another assumption I made is that the employees are always working. In reality, however, a
person could take, intentionally or not, breaks between jobs. That could be because of vacations,
relocation, education, or other reasons. This is another design decision that someone should
consider when formulating the job market as an MDP.
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5.3.3 State space and the Markov property

The Markov property means that the evolution of the Markov process in the future depends
only on the present state and not on past history. Therefore, when formulating the job mar-
ket as an MDP we have to make sure that we respect the Markov Property. This could be
done in two ways. The first option is to define a state to be a job and then assume that an
employee’s future depends only on their last job. This is what the Naive environment does.
The second option is to avoid this over-simplifying assumption and take the employees’ whole
work experience, education and skills into the state. This is what the Standard environment
partly does. Obviously, the second option is closer to reality. However the second option can
easily yield states with too many dimensions and make policy learning hard and very slow. An
option suggested in the literature for similar challenges is learning low-dimensional embeddings
and reducing the state space size. This could be done for example, by using a recurrent neural
network.

5.4 Future work

By closing this thesis, I want to give some ideas for future work. I believe that the main
challenge when trying to build such a recommendation system is the unavailability of online
interaction with the environment. As mentioned in the earlier chapter, the system can not start
interacting with the job market (environment) to learn its dynamics. That is because applying
for jobs and waiting for outcomes is a process which requires human interactions (interviews
etc) and has delayed feedback. Therefore, such a system has to learn how to navigate the job
market through offline data. In addition, due to risk of deploying such a system in production,
we have to able to evaluate its performance from offline data too. This raises several challenges
which need be addressed in future work. More specifically, I believe that more effort should
be spent on creating better simulations of the job market. This includes incorporating features
like seniority and education in the environment — something I did not have the necessary data
to do. In addition, better models for predicting the hiring (transition) probabilities should be
developed and used.
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